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Extensive evidence indicates that the basolateral complex of the 
amygdala (BLA) modulates the consolidation of memories for 
emotionally arousing experiences, an effect that involves the 
activation of the glucocorticoid system. Because the BLA expresses 
high densities of cannabinoid CB1 receptors, the present experi- 
ments investigated whether the endocannabinoid system in the 
BLA influences memory consolidation and whether glucocorticoid s 
interact with this system. The CB1 receptor agonist WIN 55,2 12-2 
(5-50 ng per 0.2 μΐ per side), infused bilaterally into the BLA of 
male Sprague-Dawley rats immediately after inhibitory avoidance 
training, induced dose-dependent enhancement of 48-h retention. 
Conversely, the CB1 receptor antagonist AM251 (0.07-0.28 ng per 
0.2 μΐ per side) administered after training into the BLA induced 
inhibitory avoidance retention impairment. Furthermore, intra- 
BLA infusions of a low and nonimpairing dose of AM251 (0.14 ng 
per 0.2 μΐ per side) blocked the memory enhancement induced by 
concurrent administration of WIN55,212-2. Delayed infusions of 
WIN55,212-2 or AM251 administered into the BLA 3 h after training 
or immediate posttraining infusions of these drugs into the adja- 
cent central amygdala did not significantly alter retention perfor- 
mance. Last, intra-BLA infusions of a low and otherwise nonim- 
pairing dose of AM251 (0.14 ng per 0.2 μΐ per side) blocked the 
memory-enhancing effect induced by systemic administration of 
corticosterone (3 mg/kg, s.c). These findings indicate that endo- 
cannabinoids in the BLA enhance memory consolidation and suggest 
that CB1 activity within this brain region is required for enabling 
glucocorticoid effects on memory consolidation enhancement. 

AM251 | cannabinoid receptors | emotional arousal | 
inhibitory avoidance | WIN55.212-2 

endocannabinoid system plays an important regulatory 
role in several brain functions, including locomotion, emo- 

tionality, feeding, and pain control (1). Endocannabinoids - that 
is, anandamide and 2-arachidonoylglycerol (2-AG) - are synthe- 
sized on demand through cleavage of membrane precursors and 
serve as retrograde messengers at central synapses (2). They bind 
to the cannabinoid receptor subtype 1 (CB1 receptor) on axon 
terminals to regulate ion channel activity and neurotransmitter 
release (3). The evidence that CB1 receptors are highly ex- 
pressed in the hippocampus, the prefrontal cortex, and the 
amygdala (4) suggests that the endocannabinoid system may be 
involved in regulating learning and memory. It is known that 
marijuana abusers experience deficits in working and short-term 
memory (5, 6) and that these effects depend partially on an 
altered activity of the hippocampus and prefrontal cortex (5, 7, 
8). Animal studies, which enable a more controlled drug regimen 
and more constant behavioral testing, have confirmed human 
findings and additionally suggested that cannabinoid treatment 
affects memory encoding and consolidation processes (5, 9, 10). 

It is well established that the basolateral complex of the 
amygdala (BLA; consisting of the lateral, basal, and accessory 
basal nuclei) is involved in mediating stress hormone effects on 
memory formation of emotionally arousing experiences (11, 12). 
CB1 receptors are highly expressed in the BLA, where they 
modulate synaptic transmission (13) and neuronal firing (14). 
Such modulating influences within the BLA may contribute to 
the emotionally relevant behavioral effects of cannabinoid 
drugs. It is well known that systemically administered cannabi- 
noids biphasically modulate emotionality and mood states (15- 
17). Additionally, recent findings indicate that CB1 receptor 
stimulation in the BLA exerts an anxiogenic-like effect (18). 
Moreover, endocannabinoids within the amygdala complex fa- 
cilitate memory consolidation of fear learning (19) as well as 
extinction of aversive memories (20). However, studies have not 
yet investigated whether the BLA is a critical region of the 
amygdala involved in mediating cannabinoid effects on memory 
consolidation. 

Some findings indicate that endocannabinoid activity is es- 
sential for mediating some of the central effects of glucocorti- 
coids (21, 22). In particular, it has been shown that within 
minutes after their administration, glucocorticoids facilitate 
endocannabinoid production and release in specific hypotha- 
lamic regions regulating hypothalamic-pituitary-adrenocortical 
axis activity (23, 24). Such interactions are of interest in light of 
growing evidence that glucocorticoids, in addition to inducing 
slow effects on gene transcription, also have a variety of rapid 
physiological actions (25). There is extensive evidence that 
glucocorticoid hormones enhance long-term consolidation of 
emotionally arousing experiences involving rapid actions on 
intracellular signaling cascades in the BLA (26, 27). Therefore, it is 
possible that the endocannabinoid system in the BLA mediates 
stress and glucocorticoid effects on memory consolidation. 

The present experiments investigated whether the cannabi- 
noid system in the BLA influences memory consolidation of 
emotionally arousing experiences and whether CB1 activity plays 
an important role in mediating glucocorticoid effects on memory 
enhancement. In the first experiment, different doses of the CB1 
receptor agonist WIN55,212-2 were administered into the BLA 
immediately after aversively motivated inhibitory avoidance 
training. Retention was tested 48 h after the training trial. A 
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Fig. 1. Effects of WIN55,212-2 on retention of an inhibitory avoidance 
response. Step-through latencies (mean and SEM) on a 48-h retention test. {A) 
Immediate posttraining intra-BLA infusions of the cannabinoid agonist 
WIN55,212-2 (WIN; 5, 10, 50 ng per 0.2 μι) enhanced memory consolidation. 
*, Ρ < 0.05 vs. vehicle (Veh; η = 10-11 per group). (B) Delayed infusions of 
WIN55.212-2 (WIN; 50 ng per 0.2 μι) administered into the BLA 3 h after 
training did not enhance memory consolidation (n = 11-12 rats per group). (Q 
Immediate posttraining infusions of WIN55,21 2-2 (WIN 50 ng per 0.2 μι) into 
the CeA did not enhance memory consolidation (n = 7 rats per group). 
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Fig. 2. Effects of AM251 on retention of an inhibitory avoidance response. 
Step-through latencies (mean and SEM) on a 48-h retention test. (A) Imme- 
diate posttraining intra-BLA infusions of the cannabinoid antagonist AM251 
(0.07, 0.14, 0.28 ng per 0.2 μΐ) impaired memory consolidation. *, Ρ < 0.05 vs. 
vehicle (Veh; η = 9-1 1 per group). (B) Delayed infusions of AM251 (0.28 ng per 
0.2 μΙ) administered into the BLA 3 h after training did not impair memory 
consolidation (n = 10-1 1 rats per group). (Q Immediate posttraining infusions 
of AM251 (0.28 ng per 0.2 μι) into the CeA did not impair memory consoli- 
dation (n = 5-6 rats per group). 

second experiment investigated the effect of immediate post- 
training intra-BLA infusions of the CB1 receptor antagonist 
AM251 to determine whether endogenously released cannabi- 
noids might play a role in memory consolidation. To control for 
time and site specificity, other groups of rats received intra-BLA 
infusions of WIN55,212-2 or AM251 3 h after training or 
infusions of these drugs into the adjacent central nucleus of the 
amygdala (CeA). A third experiment used concurrent infusions 
of WIN55,212-2 and a nonimpairing dose of the CB1 receptor 
antagonist AM251 to investigate whether the memory- 
enhancing effects of WIN55,212-2 are mediated by a selective 
activation of CB1 receptors. Finally, the last experiment 
investigated whether CB1 activity within the BLA is required 
for enabling glucocorticoid-induced enhancement of memory 
consolidation. 

Results 

Posttraining Intra-BLA Infusions of the CB1 Receptor Agonist 
WIN55,212-2 Induce Enhancement of Inhibitory Avoidance Retention. 
This experiment investigated whether the CB1 receptor agonist 
WIN55,212-2 infused into the BLA immediately after inhibitory 
avoidance training would modulate memory consolidation. Av- 
erage step-through latencies for all groups during training, 
before footshock and drug treatment, were 11.3 ± 1.1 s. One-way 
ANO VA for training latencies revealed no significant differ- 
ences between groups (F3,39 = 1.12; Ρ = 0.35). Forty-eight-hour 
retention latencies of rats infused with vehicle into the BLA 
immediately after training were significantly longer than their 
entrance latencies during the training trial (P < 0.05), indicating 
that the rats retained memory of the shock experience. As shown 
in Fig. L4, WIN55,212-2 induced dose-dependent retention 
enhancement. A 1-way ANO VA for retention latencies revealed 
a significant treatment effect (F339 = 3.44; Ρ = 0.03). Posthoc 
comparisons indicated that retention latencies of rats given 
posttraining infusions of WIN55,212-2 (50 ng) were significantly 
longer than those of rats given vehicle (P < 0.05). Lower doses 
did not significantly alter retention performance. 

To examine whether WIN55,212-2 enhanced the consolida- 
tion phase of memory processing, other groups of rats received 
intra-BLA infusions of WIN55,212-2 (50 ng) or its vehicle 3 h 
after training. As shown in Fig. IB, 48-h retention latencies of 
rats given infusions of WIN55,212-2 at 3 h after training did not 
differ significantly from those of rats given vehicle (P = 0.73). 

Additional infusions of WIN55,212-2 were made into the 
adjacent CeA to investigate the site specificity of cannabinoid 
action. Retention latencies of rats given intra-CeA infusions of 

WIN55,212-2 (50 ng) immediately after training did not differ 
from those administered vehicle (P = 0.32; Fig. 1C). 

Posttraining Intra-BLA Infusions of the CB1 Receptor Antagonist 
AM251 Induce Impairment of Inhibitory Avoidance Retention Perfor- 
mance. This experiment examined whether blockade of CB1 
receptors in the BLA with posttraining infusions of the CB1 
receptor antagonist AM251 would impair memory consolidation 
of inhibitory avoidance training. One-way ANO VA for training 
latencies before footshock and drug treatment revealed no 
significant differences between groups (F3,37 = 0.42; Ρ = 0.73). 
Forty-eight-hour retention latencies of rats infused with vehicle 
into the BLA immediately after training were significantly longer 
than their latencies during the training trial (P < 0.001). As 
shown in Fig. 24, immediate posttraining infusions of AM251 
dose-dependently impaired retention (F337 = 3.49; Ρ = 0.025). 
Posthoc comparisons indicated that retention latencies of rats 
given the 0.28-ng dose of AM251 were significantly shorter than 
those of rats given vehicle (P < 0.05; Fig. 2^4). Lower doses of 
AM251 did not significantly impair retention. 

As shown in Fig. IB, AM251 (0.28 ng) infused into the BLA 
3 h after inhibitory avoidance training did not impair retention 
latencies compared with their vehicle-treated counterparts (P = 
0.61). Moreover, retention latencies of animals that received 
intra-CeA infusions of AM251 (0.28 ng) immediately after 
training were not different from those given vehicle (P = 0.84; 
Fig. 2C). 

Infusion of the CB1 Receptor Antagonist AM251 into the BLA Blocks 
the Memory-Enhancing Effect of the CB1 Receptor Agonist 
WIN55.212-2. In this experiment, we examined whether the mem- 
ory-enhancing effect induced by WIN55,212-2 is mediated by an 
activation of CB1 receptors. To address this question, we inves- 
tigated whether intra-BLA infusions of the selective CB1 recep- 
tor antagonist AM251 (0.14 ng) would block the memory 
enhancement induced by WIN55,212-2 (50 ng). Average step- 
through latencies for all groups during training before footshock 
and drug treatment were 12.3 ± 1.1 s. A 2-way ANO VA for 
training latencies revealed no significant differences between 
groups (for all comparisons, Ρ > 0.45). Retention latencies 
during the 48-h test trial of rats infused with vehicle into the BLA 
immediately after training were significantly longer than their 
latencies during the training trial (P < 0.0001). Fig. 3 shows 
retention latencies of rats infused concurrently with 
WIN55,212-2 and AM251 into the BLA immediately after 
training. A 2-way ANOVA for memory retention revealed a 
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Fig. 3. Effects of intra-BLA infusions of WIN 5 5, 2 12-2, either alone or to- 
gether with AM251, on an inhibitory avoidance response. Step-through la- 
tencies (mean and SEM) on a 48-h retention test. Immediate postt raining 
infusions of AM251 (0.14 ng per 0.2 μι) blocked the memory-enhancing 
effects of concurrently administered WIN55,212-2 (WIN; 50 ng) into the Β LA. 
* *, Ρ < 0.01 compared with the corresponding vehicle (Veh) group; ♦ , Ρ < 0.05 
compared with the corresponding AM251 group (n = 14-15 per group). 

significant WIN55,212-2 Χ ΑΜ251 interaction effect (Fi,55 = 
4.13; Ρ = 0.047). Posthoc comparisons indicated that retention 
latencies of rats given posttraining infusions of WIN55,212-2 
were significantly longer than those given vehicle (P < 0.05). 
Retention latencies of rats given a nonimpairing dose of AM251 
together with WIN55,212-2 were significantly shorter than those 
of rats treated with WIN55,212-2 alone (P < 0.05), indicating 
that the memory enhancement induced by WIN55,212-2 is 
mediated by an activation of CB1 receptors. 

Glucocorticoid Enhancement of Memory Consolidation Requires En- 
dogenous Cannabinoids in the BLA. This experiment investigated 
whether CB1 receptor activity within the BLA is required for 
enabling the memory-enhancing effects induced by systemically 
administered corticosterone. Average step-through latencies for 
all groups during training before footshock and drug treatment 
were 12.0 ± 1.1 s. A 2-way ANO VA for training latencies 
revealed no significant differences between groups (P > 0.24 for 
all comparisons). Forty-eight-hour retention latencies of rats 
infused with vehicle into the BLA immediately after training 
were significantly longer than their latencies during the training 
trial (P < 0.001). As shown in Fig. 4, a 2-way ANO VA for 
retention latencies revealed a significant corticosterone X 
AM251 interaction effect (Fh40 = 5.08; Ρ = 0.03). Posthoc 
comparisons indicated that corticosterone (3.0 mg/KG, s.c.) 
enhanced retention latencies of rats given vehicle infusions into 
the BLA, compared with the corresponding control group (P < 
0.05). A low dose of AM251 infused into the BLA did not impair 
retention alone but blocked the memory-enhancing effects of 
corticosterone. Retention latencies of corticosterone-treated 
rats given AM251 into the BLA were significantly shorter than 
those of corticosterone-treated rats administered vehicle into 
the BLA (P < 0.05). 

Histology. Fig. 5A is a diagram of the BLA, and Fig. 5B is a 
photomicrograph of a needle track terminating within the BLA. 
Fig. 5C illustrates infusion needle sites of 20 randomly selected 
rats included in the final analyses. 

Discussion 
The present findings provide evidence that the endocannabinoid 
system in the BLA is involved in modulating the consolidation of 
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Fig. 4. Effects of intra-BLA administered AM251 on systemic corticosterone- 
induced enhancement of an inhibitory avoidance response. Step-through 
latencies (mean and SEM) on a 48-h retention test. Immediate posttraining 
infusions of AM251 (0.14 ng per 0.2 μΙ_) into the BLA blocked the memory 
enhancement induced by s.c. injections of corticosterone (CORT; 3.0 mg/kg; 
η = 10-12 per group). *, P< 0.05 compared with the corresponding vehicle 
(Veh) group; Φ, Ρ < 0.05 compared with the corresponding CORT group. 

memory for inhibitory avoidance training and that CB1 activity 
within the BLA is essential for mediating glucocorticoid effects 
on long-term memory. 

Bilateral posttraining infusions of the CB1 receptor agonist 
WIN55,212-2 into the BLA induced dose-, time-, and site- 
dependent enhancement of 48-h inhibitory avoidance retention 
performance; in contrast, bilateral posttraining blockade of CB1 
receptors with the antagonist AM251 impaired retention in a 
dose-, time- and site-specific fashion. Furthermore, a nonim- 
pairing dose of AM251 blocked the memory enhancement 
induced by coadministration of WIN55,212-2. These findings 
indicate that cannabinoids in the BLA are involved in the 

Fig. 5. (A) Diagram of the rat BLA, CeA, and adjacent structures (62). (8) 
Representative photomicrograph (Microscope Nikon 801, original magnifica- 
tion x20) of a needle track terminating in the BLA. (O Diagrams of the rat 
brain sections (62) showing 40 infusion needle termination sites randomly 
selected from rats included in the final analyses. Only data from animals that 
had needle tracks terminating in the BLA and had no lesions in the surround- 
ing BLA tissue were included in the analyses. 

4890 | www.pnas.org/cgi/doi/10.1073/pnas.0900835106 Campolongo et al. 

This content downloaded from 137.216.138.250 on Mon, 31 Aug 2015 19:02:25 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


regulation of memory consolidation, plausibly via an activation 
of CB1 receptors. CB1 receptors are expressed at high levels in 
the rat amygdala, particularly the BLA (4, 13, 28). In contrast, 
the expression of CB1 receptors in the Ce A is less clear (13, 28, 
29). Our finding that cannabinoids modulate memory consoli- 
dation when administered into the BLA but not into the CeA 
suggests that the memory enhancement induced by intra-BLA 
administration of cannabinoids was mediated by influences 
within the BLA rather than to diffusion to the CeA. Such 
findings are consistent with extensive evidence that memory 
consolidation of emotionally arousing experiences is modulated 
by selective intra-BLA infusions of drugs affecting several other 
neuromodulatory systems (12). 

Although systemically administered cannabinoids are re- 
ported to impair cognitive performance (30), there is conflicting 
evidence concerning the memory-modulating effects of canna- 
binoids administered to specific brain regions (30-32). Some 
studies reported that intrahippocampal infusions of cannabinoid 
agonists impair either the encoding or consolidation of memory 
of water-maze spatial, inhibitory avoidance, or object recogni- 
tion training (33, 34), whereas others found enhancing effects 
(35). Moreover, it has been reported that the CB1 receptor 
antagonist AM251 infused into the hippocampus impairs mem- 
ory consolidation of inhibitory avoidance training (36). Similar 
conflicting findings have been reported with regard to canna- 
binoid effects on neuroplasticity within the hippocampus (37- 
39). Differences in learning task, drug doses, and drug admin- 
istration regimen (e.g., pretraining vs. posttraining 
administration) used as well as retention performance of control 
animals could all have contributed to these complex findings. 
Although only a small number of studies have examined canna- 
binoid effects in the amygdala complex, or in the current study 
the BLA, the pattern of effects appears to be more consistent. 
Recent findings indicate that posttraining administration of 
AM251 into the amygdala complex impairs memory consolida- 
tion of fear learning (19). Here, we show that a CB1 receptor 
agonist administered into the BLA enhances memory consoli- 
dation, whereas a CB1 receptor antagonist impairs it. Because 
delayed infusions of these drugs administered several hours after 
training were ineffective, our findings provide evidence that 
cannabinoids modulate time-dependent processes underlying 
the consolidation of memory for emotional arousing experi- 
ences. Although it is possible that AM251 under certain condi- 
tions could also act as an inverse agonist (40), the present finding 
that AM251 impaired retention corroborates the importance of 
endogenously produced cannabinoids in the modulation of 
cognitive processes. Moreover, the finding that endocannabinoid 
levels are elevated in response to stressful/alerting factors (20, 
41) supports the view that endogenously stimulated CB1 activity 
within the BLA is involved in regulating memory enhancement 
of emotionally arousing experiences. 

Endocannabinoids function as diffusible and short-lived mod- 
ulators that may transmit signals retrogradely from postsynaptic 
to presynaptic neurons (3). Depolarization of a postsynaptic 
pyramidal cell, resulting in a significant increment in intracel- 
lular Ca2+ concentration, triggers the release of endocannabi- 
noids, which can freely cross the lipid membrane to act retro- 
gradely on presynaptic CB1 receptors. Activation of CB1 
receptors decreases GABA release (42-44) via a rapid inhibition 
of Ca2+ entry into the terminals (45, 46). Thus, a depolarization 
of pyramidal cells produces a short time window when inhibition 
from a specific source is reduced and excitability is increased, an 
effect that has been shown to facilitate long-term potentiation of 
glutamatergic synaptic inputs (47). Interestingly, it has been 
reported that the amygdaloid GABAergic system is involved in 
the modulation of memory storage (48). Posttraining i.p. or 
intra-BLA administration of the GABAa receptor antagonist 
bicuculline enhances retention of emotional memory, whereas 

posttraining intraamygdala administration of the GABAa re- 
ceptor agonist muscimol impairs memory consolidation (49, 50). 
Furthermore, it has been shown that inhibition of GABAergic 
activity within the BLA enhances memory consolidation by 
increasing noradrenergic transmission within this brain region 
(51), a neurotransmitter critically involved in mediating emo- 
tional arousal effects on memory consolidation (11, 12). In this 
scenario, our results suggest that intra-BLA administration of 
WIN55,212-2 may enhance memory consolidation by locally 
inhibiting GABA release and thereby stimulating noradrenergic 
activity. 

Our findings further indicated that blockade of CB1 activity in 
the BLA prevents corticosterone effects on memory consolida- 
tion. Glucocorticoid hormones are known to enhance long-term 
consolidation of emotionally arousing events via often non- 
genomic interactions with norepinephrine and its intracellular 
signaling systems within the BLA (27, 52). For example, it has 
been shown that a blockade of noradrenergic neurotransmission 
in the BLA with specific adrenoceptor antagonists prevents 
glucocorticoid effects on memory consolidation (53-55). Previ- 
ous studies indicated that glucocorticoids may also interact with 
the endocannabinoid system. Bidirectional and functional rela- 
tionships between glucocorticoids and the endocannabinoid 
system have been demonstrated (22, 56-58). Exogenous canna- 
binoids activate the hypothalamic-pituitary-adrenocortical axis 
to induce a neuroendocrine stress response (59). Glucocorti- 
coids, in turn, secreted in response to stressful experiences, 
rapidly increase endocannabinoid release in the hypothalamic 
supraoptic nucleus and paraventricular nucleus (23, 60). Hill et 
al. (24) have further shown that chronic corticosterone treat- 
ment increases the levels of the endocannabinoid 2-AG in the rat 
amygdala. Such findings suggest that glucocorticoids might 
enhance memory consolidation at least in part by stimulating 
endocannabinoid neurotransmission. As discussed above, endo- 
cannabinoids may then increase BLA activity by decreasing 
GABAergic neurotransmission, leading to increased noradren- 
ergic activity within the BLA. Interestingly, a recent study 
indicated that glucocorticoids enhance the excitability of BLA 
neurons by decreasing the impact of GABAergic influences (61). 

In summary, the present findings indicate that endocannabi- 
noids in the BLA modulate memory consolidation of emotion- 
ally arousing experiences and suggest that CB1 activity within 
this brain region is critically involved in mediating glucocorticoid 
effects on memory consolidation. 

Materials and Methods 
Subjects. Male Sprague-Dawley rats (280-320 g at the time of surgery; Charles 
River Laboratories) were housed individually and maintained in a temperature- 
controlled environment (20 °C ± 1 °C) under a 12-h light/1 2-h dark cycle (0700- 
1900 h lights on) with food and water available ad libitum. All procedures were 
performed in compliance with the guidelines of the U.S. National Institutes of 
Health and the Italian Ministry of Health (D.L 1 1 6/92), the Declaration of Helsinki, 
and the Guide for the Care and Use of Mammals in Neuroscience and Behavioral 
Research (National Research Council, 2004). 

Surgery. The rats were anesthetized with sodium pentobarbital (50 mg/kg, 
i.p.) and given atropine sulfate (0.1 mg, i.p.) to maintain respiration as well as 
3 ml_ of saline (s.c.) to facilitate clearance of these drugs and prevent dehy- 
dration. The rats were then placed in a stereotaxic frame (Kopf Instruments), 
and 2 stainless-steel guide cannulae (15 mm; 23 gauge) were implanted 
bilaterally, with the cannula tips 2 mm above the BLA [coordinates: antero- 
posterior (AP), -2.8 mm from bregma; mediolateral (ML), ±5.0 mm from the 
midline; dorsoventral (DV), -6.5 mm from skull surface; and incisor bar -3.3 
mm from interaural] according to the atlas of Paxinos and Watson (62). Other 
rats received bilateral guide cannulae (1 5 mm; 23 gauge), with the tips located 
2.0 mm above the CeA (coordinates: AP, -2.2 mm; ML, ±4.3 mm; and DV, -6.0 
mm). The cannulae were affixed to the skull with 2 anchoring screws and 
dental cement. Stylets (1 5-mm-long 00 insect dissection pins) were inserted 
into each cannula to maintain patency. After surgery, the rats were allowed 
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to recover for 10 days before training. The rats were handled 1 min per day for 
3 days before training. 

Inhibitory Avoidance Apparatus and Experimental Procedures. The inhibitory 
avoidance apparatus consisted of a trough-shaped alley (91 cm long, 1 5 cm deep, 
20 cm wide at the top, and 6.4 cm wide at the bottom) divided into 2 compart- 
ments separated by a sliding door. The starting compartment (31 cm long) was 
made of opaque white plastic and illuminated by a lamp; the shock compartment 
(60 cm long) was made of 2 dark, electrif iable metal plates and was not illumi- 
nated. Training and testing occurred between 1000 and 1600 h and were con- 
ducted in a sound- and light-attenuated room. For training, the rats were placed 
into the starting compartment facing away from the door and were permitted to 
explore the apparatus. After the rats stepped completely into the dark compart- 
ment, the sliding door was closed, and a single footshock (0.6 mA) was delivered 
for 1 s. The animals were removed from the shock compartment 15 s after 
termination of the footshock. Retention was tested 48 h later. On the retention 
test trial, the rats were placed into the starting compartment, and the latency to 
reenter the shock compartment with all 4 paws (maximum latency of 600 s) was 
recorded. Longer latencies were interpreted as indicating better retention. Im- 
mediately after the training and testing of each animal, the apparatus was 
cleaned with a 70% ethanol solution. 

Drugs and Infusion Procedures. The CB1 receptor agonist WIN55.212-2 (5, 10, 
and 50 ng per 0.2 μΙ_ per side) and the CB1 receptor antagonist AM251 (0.07, 
0.14, and 0.28 ng per 0.2 μι per side) were dissolved in a vehicle containing 
10% DMSO and 90% saline and administered into the Β LA immediately after 
inhibitory avoidance training. To control for time specificity, WIN55,21 2-2 (50 
ng per 0.2 μι per side) and AM251 (0.28 ng per 0.2 μι per side) were 
administered 3 h after training into the Β LA of different groups of rats. To 
control for site specificity, in other rats these drugs were infused into the CeA 
immediately after training. Some studies indicated that WIN55,212-2, in ad- 
dition to activating CB1 receptors, also binds to CB2 receptors (63). Therefore, 
in a third experiment, WIN55,212-2 (50 ng) was concurrently infused into the 
BLA immediately after inhibitory avoidance training, either alone or together 
with a nonimpairing dose of the CB1 receptor antagonist AM251 (0.14 ng) in 
a total volume of 0.2 μι per side to examine whether the effects of 
WIN55,212-2 are mediated via a selective activation of CB1 receptors. For the 
last experiment, the glucocorticoid corticosterone (3 mg/kg; dissolved in 5% 
ethanol in saline) or its vehicle was administered s.c. immediately following a 
posttraining intra-BLA infusion of AM251 (0.14 ng per 0.2 μι per side). 

Bilateral infusions of drug or an equivalent volume of vehicle into the BLA 

or CeA were made by using 30-gauge injection needles connected to 10-μί 
Hamilton microsyringes by polyethylene (PE-20) tubing. The injection needles 
protruded 2.0 mm beyond the cannula tips, and a 0.2-μί injection volume per 
hemisphere was infused at the rate of 0.37 μΙΛηίη by an automated syringe 
pump (KD Instruments). The infusion volume was based on findings that this 
volume of an excitotoxin administered at identical injection sites produced 
selective lesions of either the BLA or CeA (64). The injection needles were 
retained within the cannulae for 20 s following drug infusion to maximize 
diffusion and to prevent backflow of drug along the cannula track. All 

drugs were purchased from Sigma-Aldrich and freshly prepared before 
each experiment. 

Histology. The rats were anesthetized with an overdose of sodium pentobar- 
bital (100 mg/kg, i.p.) and perfused intracardially with a 0.9% saline solution. 
The brains were then removed and immersed in a 4% formaldehyde solution. 
At least 48 h before sectioning, the brains were transferred to a 20% sucrose 
solution in saline for cryoprotection. Coronal sections of 35 μητι were cut on a 

cryostat, mounted on gelatin-coated slides, and stained with cresyl violet. The 
location of infusion needle tips was determined by examining the sections 
under a light microscope according to the atlas plates of Paxinos and Watson 
(62). Only animals with needle tips located within the boundaries of the BLA 
or CeA and no damage to the target tissues were included in the final analysis. 

Statistics. Training and retention latencies of rats given immediate posttrain- 
ing infusions of WIN55,212-2 or AM251 into the BLA were analyzed with 

1-way ANOVAs. The interactions between concurrent intra-BLA infusions of 
WIN55,212-2 and AM251 and between intra-BLA infusions of AM251 and s.c. 
corticosterone were analyzed with 2-way ANOVAs. The source of the detected 

significances was determined by Tukey-Kramer posthoc tests. Differences in 
retention latencies for the delayed intra-BLA infusions or for immediate 

posttraining infusion into the CeA were analyzed with unpaired t tests. To 
determine whether learning had occurred, paired t tests were used to com- 

pare the training and retention latencies of the vehicle groups. Data are 

expressed as mean ± SEM. P values of less than 0.05 were considered statis- 

tically significant. The number of rats per group is indicated in the figure 
legends. 
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